Problems 9

19 November, 2021

Linear Differential Equations

1. Find a general form of solution $y(t)$ to the following differential equations:
(a) $y^{\prime \prime}(t)+2 \beta \omega_{0} y^{\prime}(t)+\omega_{0}^{2} y(t)=A_{0} \sin (\omega t)$
(b) $y^{\prime \prime}(t)+2 \beta \omega_{0} y^{\prime}(t)+\omega_{0}^{2} y(t)=A_{0} \cos (\omega t)$

What is the difference between the solutions to a) and b)?
2. Find solution for $y(t)$ to the following differential equations:
(a) $y^{\prime \prime}(t)+2 \beta \omega_{0} y^{\prime}(t)+\omega_{0}^{2} y(t)=A_{0} \cos (\omega t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=V_{0}$
(b) $y^{\prime \prime}(t)=-1, \quad y(0)=y_{0}, \quad y^{\prime}(0)=V_{0}$
(c) $y^{\prime \prime}(t)-\lambda^{2} y(t)=A_{0} \cos (\omega t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=V_{0}$
3. Solve the system of equations for $f(x)$ and $g(x)$:
(a)
(b)

$$
\left\{\begin{array}{l}
f^{\prime}(x)+2 g(x)=0 \\
f(x)-5 g^{\prime}(x)=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
f^{\prime}(x)-7 g(x)=\cos (x) \\
f(x)+3 g^{\prime}(x)=0
\end{array}\right.
$$

4. Knowing that $y(t)=y_{1} \cos \left(\omega t+\phi_{1}\right)+y_{2} \cos \left(2 \omega t+\phi_{2}\right)$ is a solution to the differential equation:

$$
y^{\prime \prime}(t)+2 \beta \omega_{0} y^{\prime}(t)+\omega_{0}^{2} y(t)=A_{1} \cos (\omega t)+A_{2} \sin (2 \omega t)
$$

and $\beta<1$ find the dependence of $y_{1}, y_{2}, \phi_{1}, \phi_{2}$ on the system parameters: $A_{1}, A_{2}, \omega, \omega_{0}$, and β. Sketch the graph of the dependence of $\sqrt{y_{1}^{2}+y_{2}^{2}}$ on the ω_{0} assuming that: $A_{1}=1, A_{2}=0.5$, $\omega=1$, and $\beta=0.1$.

Physics problems

1. A ball placed at initial height $h=0$ (close to the ground) is thrown with initial velocity V_{0} at an angle α with respect to the ground. Assuming the ball is subjected to gravitational acceleration g find the trajectory of the ball and angle α_{MAx} at which the ball reaches the furthest distance before hitting the ground. Assume friction force F acting on the ball is opposite to the direction of the velocity with magnitude equal to $F(v)=\beta v$.
2. A block of mass M is hanging from the celling attached to a spring with spring constant k. Motion of the block is opposed by a friction force that is proportional to its velocity. An external force varying in time as $f(t)=f_{0} \cos (\omega t)$ is applied to the block. Find and sketch the dependence of amplitude of block's vibrations as a function of:
(a) Mass of the block m
(b) Spring constant k
