
Pendulums

6th of October 2023

Tasks

1. The rotational motion in a single plane can be described using the equation: Γ = Iε.
Find the units of Γ,I,ε.

2. Derive the formula for the periods, and calculate their values for the following pen-
dulums (in each case, the centre of mass is at the distance L = 1m from the centre
of rotation and the mass of the objects is M = 1kg):

a) pendulum with a disk with radius R = 0.9m;

b) pendulum with a circular loop with radius R = 0.9m;

c) pendulum with a rectangular plate with edge lengths of a = 1m, b = 0.5m;

You can use Wikipedia (List of moments of inertia) for reference.

3. [HARD Problem] Derive the formula for the motion of a pendulum, without making
the small-angle approximation. Calculate the period of such a pendulum and plot its
dependency on the initial angle. You can assume that the mass moment of inertia is
I = mL2 and the distance from the axis of rotation to the centre of mass is L = 1m.



Solution

1. The general form of the formula for I can be expressed as:

I = βmr2 (1)

where m is mass [kg], r is characteristic length [m], and β is a dimensionless numeric
constant. The usnits for I can be computes as:

[I] = [m][r]2 = kg m2 (2)

Torque Γ can be calculated as force times the arm of the force r:

Γ = Fr (3)

computing the units we get:

[Γ] = Nm =
kg m2

s2
(4)

With these we can proceed to determining units of ε as:

[ε] =

[
Γ

I

]
=

kg m2

s2
/kg m2 =

1

s2
(5)

2. We will denote the moment of inertia around the centre of mass ad ICM . It is important
to distinguish ICM from the moment of inertia around the rotational axis I, which does
not necessarily pass through the center of mass. Relation between the two can be found
using the Steiner’s formula:

I = ICM +ML2 (6)

Knowing the moment of inertia around the rotational axis standard form of the equation
of motion can be used:

Γ = Iε (7)

Substituting the formula for the moment of inertia and the torque:

−MgL sin(φ) =
(
ICM +ML2

)
ε (8)

simplifying a bit and assuming small oscillations we get:

− MgL

ICM +ML2
φ = ε (9)

This equation can be recognised as the equation for a simple harmonic pendulum. In
that case the frequency is:

ω2 =
MgL

ICM +ML2
(10)

and the period is:

T = 2π

√
ICM +ML2

MgL
(11)

Now we can proceed to solve each case.



a) The moment of inertia around the center of mass for a filled disk is (from Wikipedia):

ICM =
1

2
MR2 (12)

giving:

T = 2π

√
R2 + 2L2

2gL
(13)

Substituting the given values:
T = 2.378 s (14)

b) The moment of inertia around the center of mass for a circle is (from Wikipedia):

ICM = MR2 (15)

giving:

T = 2π

√
R2 + L2

gL
(16)

Substituting the given values:
T = 2.699 s (17)

c) The moment of inertia around the center of mass for a rectangle is (from Wikipedia):

ICM =
1

12
M(a2 + b2) (18)

Substituting the given values:
T = 2.108 s (19)

3. Without the small angle approximation the equation of motion is:

−g

l
sin(φ) = φ̈ (20)

This equation is hard to solve using standard methods, we will proceed with numerical
analysis. Let’s analyse equation of motion considering small time steps, of length dt.
Within each step we will assume that the acceleration φ̈ is constant. For each such time
step the solution for position at time t+ dt can be calculated as:

φ(t+ dt) = φ(t) + φ̇dt+
1

2
φ̈dt2 (21)

where φ(t) is the position at time t, ω is angular velocity at time t, and φ̈ is the acceler-
ation at time t. Additionally

ω(t+ dt) = φ̇+ φ̈dt (22)

We will use the above equations to compute φ̈, φ̇ and φ for each time step, starting from
initial values of φ = φ0 and φ̇ = 0. In excel first we define a column with time of each
time step:



where time starts at 0 s, ends at 2 s with a time step dt of 0.005 s. With initial values
φ(0) = φ0 and φ̇ = 0 and write formula for acceleration:

Notice that the cell containing the value of constant −g/l is fixed by using $ sign. Here we
wrote acceleration formula for all values of φ. Now we can proceed with writing formula
for angle:

and angular velocity:

Now we just pull formula boxes down in order to calculate next steps:



We can see that value of angle is decreasing(pendulum is falling) and velocity is increasing.
After solving more in time domain we can plot solution.

And then trace in raw data when solution passes whole period.



Doing so for different initial angles we get a solution to problem:

As mentioned before, solving the nonlinear equation is hard but not impossible! Since
the energy of the system is conserved:

−mgl cos(φ0) =
ml2φ̇2

2
−mgl cos(φ) (23)

Where left hand side is a total energy at the beginning of the motion and the right hand
side is energy at any moment of motion. Solving gives:

φ̇ =

(√
2g

l

)√
cos(φ)− cos(φ0) (24)

Now one needs to recall fact that φ̇ = dφ
dt
. Let’s call ξ =

√
2g
l
and rewrite our formula:

dt =
dφ

ξ
√
cos(φ)− cos(φ0)

(25)

The physical meaning of above formula is as follows: traveling distance dφ takes different
amount of time for different angles. For example at φ ≈ φ0 it takes much longer then for
φ = 0 hence angular velocity is very small. Now we need to sum times to get how much
it will take to travel from φ = φ0 to φ = 0 and it is exactly 1/4 of a period. Such sum
over continuous very small distances is in fact an integral:

T

4
=

1

ξ

∫ 0

φ0

dφ√
cos(φ)− cos(φ0)

(26)

This is an elliptic integral. Such functions cannot be expressed using standard functions,
but its values have been well studied and tabulated in great detail. Using the below scrip
in Mathematica, we’ve solved integral using function Integrate[] and solution is as we
expected dependent on tabulated function EllipticF[a,b]. It takes arguments and returns
a value of this elliptic integral from table of values. Then using solution we calculated
values of period for different φ0 and assuming g = 9.81m/s2. As the function may be not
intuitive it is shown on the plot below.




